
3.2 Survival, hazard, Cox regression



Time-to-event data

• Survival analysis concerns analysing the time to the 
occurrence of an event, e.g. time until a patient dies.

• Such  analysis is used for cohort studies and randomized 
clinical trials (RCTs), where study participants are followed 
from a start time to an endpoint. 

• The outcome has two components

– the time the individual was followed for

– an event indicator to distinguish between events (usually 
coded 1) and non non-events (“censorings”) coded 0. 
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Examples of time-to-event data

• time (years) from diagnosis of cancer to death 

• time (months) from delivery to next pregnancy 

• time (weeks) from birth to infant vaccination. 

• time (days) from admission to discharge of hospital 
patients
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• We have seen how “time-to-event” information can be used 
to calculate the incidence rate over the follow-up period.

• The events (e.g. deaths) that we observe are only among 
those individuals still being followed.

• Need to take time-at-risk (follow-up time) into account if we 
wish to describe the risk at specific time points and not just an 
overall incidence:

This is what survival analysis achieves. 
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How to describe the pattern of the 
incidence rate over time
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Event Censored

calander time 

Each line a person

time since entry

t0

Time scale changed to 
time since entry. 5

Visualizing individual survival data 
(open cohort)
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Event Censored

time since entry

t0

Each line a person

time since entry

t0

Individuals ordered by 
survival time.
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Visualizing individual survival data 



Describes the probability of 
”surviving” to time t, S(t).

• Properties:

– Value between 0 and 1.

– All (100%) “alive” at start.

– Decreasing over time
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• S(t) contains all information 
about the survival 
probability changes over 
time.

• Provides estimates of:

– Median survival time (tm).

– 1 year survival probability (p1).

We estimate of S(t) using a 
”Kaplan-Meier” curve ……..
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Time: t0 t1 t2 ti

At risk: n0 = 15 n1 = 13 n2 = 11 ni

Probability of 
surviving at t:

P0=1-d0/n0 P1=1-d1/n1 P2=1-d2/n2 Pi=1-di/ni

Estimate of S(t):
1 P1= 12/13

P1P2 = 
(12/13)(10/11)

P1P2…Pi-1Pi

t0 t1 t2 t0 t1 t2

Kaplan-Meier curve
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We usually want to assess how survival 
depends on an exposure X.



• Individuals with X=0 have better 
survival compared to those with 
X=1 or X=2

• Survival (Kaplan-Meier) curves 
are compared formally using the 
log-rank test
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Often, we want to study how survival depends on exposure and
confounders, as we did for binary outcomes (using logistic models)

So we need to model the survival

Comparing survival curves



Usual regression model for survival data is the

Cox proportional hazards model which:

• models the hazard, h(t), i.e. the instantaneous rate 
(events per unit time) at time t.

• assumes the hazard for an individual with exposure X is:   

h(t|X) = h0(t)expβX i.e. ln{h(t)} = ln{ho(t)} + βX

where h0(t) is the ”baseline” hazard (if X = 0)

h(t|X)
h0(t)

= expβX is the hazard ratio, HR
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Note the similarity to the logistic model and the OR

Cox regression model



Models Linear Predictors Measure of 
Associations 

Linear 
Regression 

Y[X]  
= α + βX 

Slopes 

Logistic 
Regression 

ln(P[Y=1|X]/P[Y=0|X])  

= α + βX 
Odds ratios 

Cox 
Regression 

ln{h(t|X)}  
=ln{h0(t)} + βX 

Hazard ratios 
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Compare models



Mathematical connection between h(𝑡|𝑋) and 𝑆(𝑡|𝑋):

equivalent to

Large hazard implies a rapid rate of decline in survival 𝑆(𝑡|𝑋)
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𝑆(𝑡|𝑋) = [𝑆0(𝑡)]
𝑒𝑥𝑝𝛽𝑋

h(𝑡|𝑋)=ℎ0(𝑡)𝑒𝑥𝑝
𝛽𝑋

Hazard and survival functions 
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• In case 𝛽 > 0:

𝑋 ↗ ⟹ 𝑒𝑥𝑝𝛽𝑋 ↗ ⟹ 𝑆 𝑡 𝑋 < 𝑆0(𝑡)

Higher 𝑋-values associated with increased risk for event

• In case 𝛽 < 0:

𝑋 ↗ ⟹ 𝑒𝑥𝑝𝛽𝑋 ↘ ⟹ 𝑆 𝑡 𝑋 < 𝑆0(𝑡)

Higher 𝑋-values associated with reduced risk for event

𝑆(𝑡|𝑋) = [𝑆0(𝑡)]
𝑒𝑥𝑝𝛽𝑋

Hazard and survival functions 
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𝛽 > 0 𝛽 < 0

Low

High

High

Low

Hazard and survival functions 
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HR1vs0 = h1(t)/h0(t) = 2 

HR2vs0 = h2(t)/h0(t) = 4

HR3vs0 = h3(t)/h0(t) = 8

Example of 4 groups, each with constant hazard

Using red as reference 
or ”baseline hazard”:

h0(t) = 0.1

Survival curves look 
like this

h0(t) = 0.1
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• Means the ratio of the hazards for the two groups is 
constant over time,  expβ does not depend on time.

• Places no restrictions on the shape of the baseline 
hazard, h0(t), but requires h(t|X)/h0(t) = expβX.

• In previous example, the 4 hazards were constants.
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Proportional hazards (PH) assumption
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Finds the β that gives best fit of the hazard 
h(t|X) = h0(t)exp(βX) to the data

or equivalently, 

ln{h(t|X)}= ln{h0(t)}+ βX

Note similarity to logistic regression where 
we find β that gives best fit of the logistic 
model to the data

logit(P[Y=1]) = 𝛂 + βX

𝑒𝑥𝑝𝛽 =HR

𝑒𝑥𝑝𝛽 =OR

Cox regression model
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Risk sets Ri ’s consist of 
individuals at risk of 
having the event at time ti

t1 t2 t3 t4
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At each event time, individuals at risk of the event are called the “risk set”

But only one individual actually has the event (if time is precise)

The total hazard of all individuals 

at risk at that time = 𝚺 h0(t)exp
𝛽𝑋𝑘

likelihood/hazard for the case that 

occurred = h0(t)exp
𝛽𝑋𝑖

Cox regression model:
estimates β by maximum (partial) likelihood



Risk sets Ri ’s

t1 t2 t3 t4
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At each event time

total hazard of risk set =  𝚺 h0(t)exp
𝛽𝑋𝑘

hazard for the case = h0(t)exp
𝛽𝑋𝑖

“best” 𝛽 maximises the ratio

h
0
(t)exp𝛽𝑋𝑖

𝚺 h
0
(t)exp𝛽𝑋𝑘

= 
exp𝛽𝑋𝑖

𝚺 (t)exp𝛽𝑋𝑘

… at all event times….

Baseline
hazard
cancels

Cox regression model:
estimates β by maximum (partial) likelihood
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Cox partial likelihood: 𝐿(β) = ෑ

𝑡
𝑖

exp𝛽𝑋𝑖

σ𝑘𝜖𝑅𝑖
exp𝛽𝑋𝑘

Risk sets Ri ’s consist of 
individuals at risk of having 
the event at time ti where 
ti is the i-th event time. 

t1 t2 t3 t4
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Cox regression model:
estimates β by maximum (partial) likelihood



Question: Is the survival of HIV+  individuals with no 
drug use history different from those with drug use 
history after adjusting for age?

Cox regression model:

ln{h(t|Drugi, Agei)} = ln{h0(t)} + β1Drugi + β2Agei

H0: β1 = 0  (or hazards same: exp𝛽1 = 1). 

H1: β1 ≠ 0  (or hazards different: exp𝛽1 ≠ 1)
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* Data from Hosmer & Lemeshow, Applied Survival Analysis, 2nd ed, Wiley 2008

(available from R package “simPH”)

Example*



• HIV+ individuals with drug use have significantly higher hazard 
when compared with those with no drug use after adjusting 
for age (HR = 2.8, 95%CI: 1.7 to 4.6).

• When age increases by 1 unit, the hazard increases by a factor 
of 1.10 (95% CI: 1.06-1.14; P-value) after adjusting for drug 
use.
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Cox regression model



𝑡1
0 𝑡2

0𝑡1
1 𝑡2

1

• If different baseline hazards for 
each level of a binary confounder 
(0: black vs 1: yellow),

• PH assumption not satisfied. 

• Can perform a stratified Cox 
model (assumes h0(t) constant 
within strata): 

𝐿(β) = ෑ

𝑠

ෑ

𝑡𝑖
𝑠

exp𝛽𝑋𝑖
𝑠

σ
𝑘𝜖𝑅𝑖

𝑠 exp𝛽𝑋𝑘
𝑠

25Note the parallel to stratified logistic regression, with stratum effect

Stratified Cox regression model



• Kaplan-Meier curves are often used to 
present data, and a log-rank test used to 
compare groups

• Most common model in survival analysis is 
Cox regression which estimates the hazard 
ratio for the exposed compared to the 
unexposed.
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Survival analysis –final comments


